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1. INTRODUCTION

In this paper we examine the behavior of the best uniform rational approxi­
mation operator in certain generalized weight function approximation
problems. An introduction to this subject is given in [2].

Let Xbe a compact topological space, and forI E C(X) let

11/11 = maxl/(x)l·
xeX

LetP and Q be two finite dimensional linear subspaces of C(X). In generalized
rational approximation one is interested in approximating an IE C(X) by a
function of the form r = p!q where PEP, q E Q and q > 0 on X.

A generalized weight function W(x, y) is defined for x E X, y real, and has
values in the extended reals. Specific examples and a number of results con­
cerninggeneralized weight functions are given in ([1], [2], [3], [4]). In this paper
we are concerned with the problem of finding a generalized rational function r
which minimizes

sup IW[x,f(x) - r(x)]l·
xeX

(1)

The sections which follow give a number of results concerning (1), assuming
various hypotheses on W(x, y) and on the space offunctions P + rQ where r is
a solution to the approximation problem. Here P + rQ = {p + rq: PEP, q E Q}.

Certain notations are used throughout the paper. Suppose for a fixed
rationalfunction rthatP + rQ has a basisg" ... , gn.Thenfor x E Xwedefine a
vector xby

(2)

The symbol 0 denotes the origin of Euclidean n-space. Suppose Y is a subset
of X, and g is a real valued function defined on Y. Then

H{g(y) y: y E Y}

denotes the convex hull of the set of vectors g(y) y with y E Y.

1 Supported by N.S.F. Grant GP-8686.
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If G is a linear subspace of C(X), of dimension k, then G is called a Haar
subspace iff every nonzero element of G has at most k - 1zeros.

2. RESTRICTED RANGE ApPROXIMATIONS

Let I and u be two elements of C(X) satisfying

I(x) < u(x) V X EO X.

Letf* E C(X) be the function to be approximated, and define

R = {r == p(q: PEP, q E Q, q> 0, I <f* - r < u}. (3)

(4)

In the discussion which follows we always assume that R is nonempty.
We shall consider a generalized weight function W(x, y) with the following

properties:

If D = {(x, y): x EX, Y real, I(x) < y < u(x)} then:

(a) W(x, y) is continuous over D;
(b) oW(x, y)(oy is continuous over D and positive at each point

(x, y) of D withy # 0;
(c) (x, y) EO D => sgn W(x, y) = sgn y;

(d) x EO X and y > u(x) => W(x, y) = 00;

(e) x E X and y < I(x) => W(x, y) = -00.

These hypotheses are satisfied, for example, in the problem considered in [4).
For notational convenience we write

E(f* - r)(x) == W[x,f*(x) - rex)].

We call E(f* - r) the weighted error function. Thus the problem (1) is to
mInImIZe

sup IE(f* - r)(x)1 == IIE(f* - r)ll·
x

In restricted range approximations there are two types ofcritical points. For
a particular r E R under consideration define:

X+ I = {x E X: E(f* - r)(x) = IIE(f* - r)ll}

X_I = {x E X: E(f* - r) (x) = -IIE(f* - r)ll}

X+ 2 = {x EO X: E(f* - r)(x) = u(x)}

X_2 = {x EO X: E(f* - r)(x) = I(x)}

Xr = X+ I U X_I U X+ 2 U X-2 •
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In [1] it was shown that the cases X+ 1 n X_2 =1= 0 and X_I n X+ 2 =1= 0 are
exceptional, and not of general interest. Here we shall assume

X+I n X_2 = X_I n X+ 2 = 0.

Then iff* ;t r we can define an integer valued function ar on Xr as follows

(

SgnE(f* - r)(x) x E X+ I U X_I
ar(x) = +1 x E X+ 2

-1 X EX_2•

For the remainder of this section we assumef* i R. The following character­
ization theorem and lemma, which we shall need later, are established in [1].

THEOREM 1. If P + rQ is a Haar subspace then r is a best approximation to
f* iff

o E H{ar(x) x: x E Xr}.

LEMMA 1. IfP + rQ is a Haar subspace then

oE H{ar(x) x: x E Xr}

iff there is no nonzero hE P + rQ such that (arh)(x);> Ofor all x E Xr.

If r* is a best approximation to f* from Rand P + r* Q is a Haar subspace,
then r* is unique [1]. In this situation we shall denote r* by T f*. We shall
establish the continuity of the operator T at a normal point f* E C(X).

DEFINITION. f* E C(X) is a normal point iff it has a best approximation r*
from R such that P + r* Q is a Haar subspace whose dimension = dimension
P + dimension Q - 1.

Results concerning normal points can be found in ([5], [6], [7]). The first
result we shall prove here is a strong uniqueness theorem.

THEOREM 2. Let r* be a best approximation to f* from R. If f* is normal
then there exists an IX > 0 such that for all r E R

IIE(f* - r)ll;> IIE(f* - r*)11 + IXIIE(f* -- r*) - E(f* - r)ll. (5)

Proof (Note that this result is trivially true if f* E R.) We assume f* ;t r*
and that there is no IX as stated. Then there exist sequences {rn} C Rand {lXn},
where IXn -+ 0 and

IXnIIE(f* - r*) - E(f* - rn)11 = IIE(f* - rn)II-IIE(f* - r*)II·
Here rn= Pn!qno qn > 0, IIPnl1 + Ilqnl\ = 1, and rn ;t r*. Since I <-f* - rn<- u, {rn} is
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(6)

bounded. Here there is no loss of generality in assuming that there exist
PEP, q E Q such that Ilpll + Ilqll = land Pn -+ P, qn -+ q. We also can assume
r* = p*jq* where IIp*11 + Ilq*11 = 1. For simplicity of notation we shall write
a(x) == ar.(x).

If x E X+ 1 U X_I then

ocnllE(f* - r*) - E(f* - rn)11
= IIE(f* - r.)11 -IIE(f* - r*)11
> a(x){W[x,f*(x) - rn(x)] - W[x,f*(x) - r*(x)]}

= ( ) oW[x,Yn(x)] [ *( ) _ ()]
a X oY r x rn x .

Here Yn(x) is betweenf*(x) - r.(x) andf*(x) - r*(x). For the fixed x under
consideration it might happen that zero is a point of accumulation of
{f*(x) - r.(x)}. If that happens then by choosing subsequences one can
assumef*(x) - rn(x) -+ O. Then for sufficiently large n,

a(x) [r*(x) - r.(x)] = a(x) [r*(x) - f*(x) + f*(x) - r.(x)] <: O. (7)

This uses the fact that

a(x) [f*(x) - r*(x)] = 11(f* - r*)11 > O.

Now by multiplying each side of (7) by q.(x) and taking limits, one concludes

0> a(x) [r*(x)q(x) - p(x)]. (8)

If {f*(x) - r.(x)} does not have zero as a point of accumulation then there
exists an N such that

d(x) == infoW[x, ynCx)] > O.
n~N oY

Hence for sufficiently large n it follows from (6) that

d~~) IIE(f* - r*) - E(f* - rn)11 > a(x) [r*(x) - r.(x)]. (9)

Then by multiplying by q.(x) and taking limits one again obtains the inequality
(8). That is, (8) holds for all x E X+ 1 U X_I'

For x E X+ 2 U X_2 ,

a(x) [f*(x) - r*(x)] > a(x) [f*(x) - rn(x)].

Hence

a(x)[-r*(x)qn(x) + pix)] > o. (10)

Taking limits we again conclude that (8) holds.
Since (8) holds for all x E Xr we obtain, using Lemma l, -r*q + p == O.
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It then follows from ([5), p. 165) that p* =. p, q* =. q, and hence rn -'; r*. We
conclude that zero is not an accumulation point of {f(x) - rn(x)} when
x E X+ I U X_I' Thus, since in any event rn -'; r* uniformly, there is no loss
of generality in assuming there exists ad> 0 such that for all n and all
x E X+ I U X_I>

d
oW[x, Yn(x»)

< oy .

Since qn -'; q* uniformly, there exists a 8> 0 such that for all n and all
x E X, qix) ;;;. 8. By a straightforward argument, using Lemma I and (10), it
follows that there exists a c > 0 such that for all n,

c< max
XEX+l U X-I

a(x) [r*(x)qn(x) - pix»)

Ilr* qn - Pnll -

Using the above results in (6), we conclude

IXnIIE(f* - r*) - E(f* - rn)11 ;;;. dcllr*qn - Pnll
;;;. dc81lr* - rnll·

An application of the mean value theorem to this inequality gives the existence
of an m > 0 such that

Since rn "¢- r* and IXn-'; 0, this yields the desired contradiction and completes
the proof.

We now focus our attention on the continuity of T at a normal pointf*. Let

F= {fE C(X): I <f- Tf* < u}. (1i)

For eachf E F, we consider the question of finding a solution to the problem of
minimizingllE(f- r)11 for r E R.

THEOREM 3. Letf* be a normalpoint ofC(X). Then there exists an IX > 0 such
that fo E F and II f* -foil < IX imply that fo has at least one best approximation.
Moreover, there exists a constant fl> 0 such that for any best approximation
ro tofo,

IIE(f* - Tf*) - E(fo - ro)11 < flll(f* - fo)ll· (12)

Proof Let r* be the best approximation to f*. The search for a best approxi­
mation to fo may be confined to those ro E R for which

IIE(fo - ro)11 < IIE(fo - r*)II·
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Such fo satisfy (using the triangle inequality)

IIE(/* - r*) - E(/o - ro)11 ~ IIE(/* - r*) - E(/* - ro)11
+ !IE(/* - Yo) - E(/o - ro)ll.

Using Theorem 2 and then the triangle inequality and other manipulations, it
follows that the above is

1
< -[lIE(/* - fo)II-IIE(/* - f*)II] + IIE(/* - fO) - E(/o - Yo)11

Ci.

< ~[lIE(/* - Yo) - E(/o - Yo)1I + IIE(/o - Yo)/I-IIE(/* - y*)II]
Ci.

+IIE(/* - fo) - E(/o - fo)11

< ~ [IIE(/* - Yo) - E(/o - fo)11 + IIE(/o - f*)II-IIE(/* - y*)II]
0(

+ IIE(/* - Yo) - E(/o - fo)[[

< ~ [IIE(/* - Yo) - E(/o - Yo)11 + IIE(/o - y*) - E(/* - y*)II]
Ci.

+ IIE(/* - Yo) - E(/o - Yo)ll·
Application of the mean value theorem to each of the three "normed"

quantities above, leads to the result (12). The proof is then completed by use of
the methods in [5], p. 168, and [6].

It is worth noting that many generalized weight function approximations
which do not have the restricted range condition can be considered to have it.
For example, suppose W(x, y) satisfies:

(a) sgn W(x, y) = sgn y;

(b) W(x, y) and oW(x, y)joy are continuous;

(c) oW(x, y)joy > 0 when y =1= 0, and lim IW(x, y)! = 00.

Iyj-->co

This allows us to select u(x) sufficiently large, and lex) sufficiently small, so that
X+ 2 = 0 and X_2 = 0. Then the results of Theorems 2 and 3 hold. These
results are, thus, important if one is considering the computational aspects of
this problem.

Next we consider the case where P + (rf *) Q is a Haar subspace butf * is not
necessarily a normal point of C(X).

THEOREM 4. Let {/,,} c F and {Yn} c R be two sequences such that

/" -+ f*
and

JIE(/" - yn)11 -IIE(/* - y*)II·
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Here r* = Tf*. If rn is written in the normalized form rn= Pn(qR' with
IIPnl1 + tlqnll = 1, then the sequence {(Pn, qn)} converges to the subspace

M ={(p,q): PEP, q E Q, -P + r*q =OJ;
that is,

distance [M, (PR' qn)] --+ 0.

Proof If r* =f* we find E(/n - rn) --+ 0, and hence by the properties of the
weight function,fn - rn --+ 0. Thus a fortiori we obtain the desired result.

Iff*;t r* and the result is false then there exist subsequences of {J,,} and
{rn} which we do not relabel satisfying

(a) there exist an E > °such that distance [M,(Pn,qn)];;;" E for all n;

(b) Pn --+ P, qn --+ q where Ilpll + Ilqll = 1.

IIEUn - rn)\1 -IIE(f* - r*)11
;;;., ur.(x) [E( In - rn)(x) - E(f* - r*)(x)].

Using the same techniques as were employed in the proof of Theorem 2, one
can verify that

0;;;., ur.(x) [r*(x)q(x) - p(x)]. (13)

for all n

Since inequality (13) also holds for x E X+ 2 U X_ 2, it follows by Lemma 1 that

r*q - P =0.

This contradicts the assumption that

distance [M, (pn' qn)] ;;;., E

and completes the proof.

For the remainder of this section we specialize to the situation where
X = [a,b]. We make the assumption that for each nonzero q E Q, the set of
zeros of q is of measure zero.

THEOREM 5. If {rn} C Rand {f,,} C F are such that rn= Pn(qR' IIPnl1 + IIqnll = 1,
(p",qn) --+ M, and fn --+ f*, then EUn - rn) --+ E(f* - r*) in measure. Here
M = {(p,q):p EP, q E Q, -P + r*q =O}.

Proof Assume the contrary. We can then find subsequences of {rn} and
{J,,}, which we do not relabel, such that

(a) There exist an E > °and a positive integer k such that if

Bn={x: IE(J" - rn)(x) - E(f* - r*)(x)1 > 11k}
then the measure of Bn is greater than E for all n;

(b) Pn --+ P, qn --+ q where Ilpll + Ilq[1 = 1.
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Since Ilpll + Ilqll = 1 and -p + r*q == 0, we conclude that q ot O. Let

Xo = {x:q(x) ¥ OJ.
By hypothesis the measure of Xo is b - a. Choose a closed set Xl C Xo such
that the measure of Xl is b - a. On XI> E(fn - rn) -'>- E(f* - r*) uniformly.
Thus for large n, En n Xl = 0, which implies that En has measure zero. This
is a contradiction.

The following result is then clear.

THEOREM 6. If r* is a best approximation to f * and P + r* Q is a H aar sub­
space, thenfor every pair ofsequences {rn} C Rand {fn} C F such thatfn -'>- f and
IIE(fn - rn)II-'>-IIE(f* - r*)II, E(fn - rn) -'>- E(f* - r*) in measure.

3. RATIONAL ApPROXIMATION WITH INTERPOLATION

We turn now to a different sort of restricted range approximation. Using the
ordinary uniform norm as a measure oferror we are interested in finding a best
rational approximation which interpolatesf(x) on a prescribed point set. To
be more specific, let {XI' ... , xk } C X, where k « dimension P, be a given set of
points. Forf E C(X) let

R f = {r ==pjq:p EP; q E Q; q> 0; r(xi ) = f(x;), i= 1, ..., k}

Then we call r* E Rf a best approximation toffrom Rf iff

distance (Rf,f) = IIf- r*I)·
For each r E Rf define

Sr= {-p+ rq:p EP; q E Q; (-p + rq)(xi ) =0, i= 1, ..., k}.

DEFINITION. Sr is called an interpolating Haar subspace iff every nonzero
element in Sr has at most d(r) - 1 zeros distinct from {XI> ... , Xk}. d(r) is the
dimension of the subspace Sr.

Clearly if P + rQ is a Haar subspace, then Sr is an interpolating Haar sub­
space. The following theorem and lemma are given in [8].

THEOREM 7. r is a best approximation to f from R f iff

oE H {a(x)x: X E X r}

where

a(x) = sgn [I(x) - rex)], X r = {x E X: If(x) - r(x)j = Ilf- rll},
Here x== (gl (x), glx), ... , gnCx), where gl> g2, ... , gn is a basis ofSr.
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LEMMA 2. If r is a best approximation to f from Rf> where r '" f and Sr is an
interpolating Haar subspace, then h E Sr and a(x)h(x) ;;;. 0 for all x E Xr imply
h=.O.

In [8], under the assumption that the dimension of the interpolating Haar
subspace Sr is (dimension P + dimension Q- 1 - k), the Lipschitz continuity
of the best approximation operator atfwas demonstrated. In general we will
show that only convergence in measure can be expected.

THEOREM 8. Let r be a best approximation to f from Rf and assume Sr is
an interpolating Haar subspace. Let {rn} and {f,,} be two sequences with the
properties:

(a) rn E Rfn , where rn= Pnlqn andllpn\\ + jjqn\\ = 1;

(b) fn -+ f;

(c) lifn - rnll -+ Ilf- rll·

DefineM = {(p,q) E P X Q: -p + rq =. O}. Then

distance [(Pn, qn), M] -+ 0

Proof. For the case r =.j, the result is clear. If r '" j, assume that the result is
false. Then (by taking subsequences ifnecessary) there exists an € > 0 such that

(14)

for all n. By taking further subsequences we can secure thatPn -+ p and qn -+ q.
Now, for each interpolating point Xi'

-Pn(Xi) +qnCXi)fn(Xi) = O.

Sincefn(xi) = rn(xi), one finds by taking the limit,

-p(xi) + q(Xi) r(xl) = O.

Hence -p + rq E Sr' By the same argument used in Theorem 2,

-p(X) + q(x) rex) = 0

for each x E Xr • Hence by Lemma 2

-p + rq=.O.

This contradicts (14).

THEOREM 9. Ifr* E Rf , and P + r* Q is a Haar subspace, then there exists a
y > 0 such that II f - gil < y implies that Rg is nonempty. Furthermore, if fn -+ j
and II f - fnll < y, there exist rn E Rfn such that rn -+ r*.
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Proof Consider the system of equations for p and q

i= I, .. " k.

By hypothesis, this system can be solved in a neighborhood of p = p*, q = q*
and g =ffor a p and q such that if r = p/q, r E Rg and r is close to r*.

COROLLARY. Under the same hypotheses as in the previous theorem, In ~ f
implies distance (Rfn,In) ~ distance (Rf,f).

Now if we specialize to the case where X = [a, b) and assume for each non­
zero q E Q, that the set of zeros of q has measure zero, we find, pursuing the
same ideas as in the restricted range case, that:

THEOREM 10. Assume r is a best approximation to f from R f and Sr is an inter­
polating Haar subspace. Then (f {rn} and {In} are two sequences such that in ~J,
rn E Rfn and 1/ in - rnll ~ II f - rll, then rn~ r in measure.
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